DCN: BSI-ATM-0112 , Revision: 1.1 , Effective Date: 18 Jan 2024 , Date of Next Review: 18 Jan 2027 ;



# TROMETHAMINE UNSPECIFIED DEGRADATION PRODUCTS VIA GC-FID

DGN: BSI-ATM-0112 , Revision: 1.1 , Effective Date: 18 Jan 2024 , Date of Next Review: 18 Jan 2027 ;

# **TABLE OF CONTENTS**

| 1,, | PURPOSE:                 | .3  |
|-----|--------------------------|-----|
| 2.  | SCOPE:                   | .3  |
| 3.  | RESPONSIBILITIES:        | . 3 |
| 4.  | REFERENCES:              | . 3 |
| 5.  | MATERIALS AND EQUIPMENT: | ,3  |
| 6.  | METHOD PARAMETERS:       | , 4 |
| 7.  | TESTING PROCEDURE:       | . 5 |
| 8.  | CACULATIONS:             | 6   |
| 9.  | CHROMATOGRAMS:           | 6   |

#### I. PURPOSE:

1.1. To provide Analysts with a procedure for determining Tromethamine unspecified degradation products determination by GC with FID determination.

#### 2. SCOPE:

- 2.1. This analytical method applies to the Tromethamine unspecified degradation products determination via GC-FID.
- 2.2. This Tromethamine unspecified degradation products method was validated as a Category II quantitative analytical method.
- 2.3. The unspecified degradation product specification is not more than 0.03% each.
- 2.4. The method applies to the Tromethamine raw materials, in-process materials, stability materials and finished goods material analysis.

#### 3. RESPONSIBILITIES:

- 3.1. The Director of Laboratory Services is responsible for the control, training, implementation and maintenance of this procedure.
- 3.2. The analytical chemists, or qualified designees, are responsible for performing the testing in this procedure.
- 3.3. The analytical chemists performing this procedure, with help from the Laboratory Manager if necessary, are responsible for documenting the results obtained from testing.
- 3.4. Safety: Standard laboratory safety regulations apply. Before working with any chemical and understand the Safety Data Sheet (SDS).

#### 4. REFERENCES:

- 4.1. BSI-PRL-0688, Analytical Method Validation Protocol: Tromethamine Assay and Degradation Products Via GC FID
- 4.2. BSI-RPT-1373, Analytical Method Validation Report: Tromethamine Unspecified Degradation Products Via GC-FID
- 4.3. BSI-SOP-0098, Balance SOP
- 4.4. BSI-SOP-0126, Laboratory Notebooks
- 4.5. BSI-SOP-0134, Pipette SOP
- 4.6. BSI-SOP-0244, VWR Gravity Convection Operation and Calibration (Model Number 414005-106)
- 4.7. BSI-SOP-0436, Analytical Methods Validation Master Plan
- 4.8. Shimadzu QP2010S GC/MS SOP
- 4.9. USP NF <621>

#### 5. MATERIALS AND EQUIPMENT:

#### 5.1. **Equipment:**

- 5.1.1. Analytical Balance
- 5.1.2. Micropipettes
- 5.1.3. GC-MS
  - 5.1.3.1. Make: Shimadzu
  - 5.1.3.2. Model: GC-2010, equipped with FID detector.
- 5.1.4. GC Column: 30m RTX-5 Amino column 0.53mm ID 1.00µm film thickness
  - 5.1.4.1. Make: Restek
  - 5.1.4.2. Part Number: 12355
- 5.1.5. Laboratory Notebook

#### 5.2. Reagents:

5.2.1. Purified Water/MilliQ Water

The information contained herein is the confidential property of BioSpectra. The recipient is responsible for its safe-keeping and the prevention of unauthorized appropriation, use, disclosure and copying.

- 5.2.1.1. Supplier: BioSpectra Inc.
- 5.2.1.2. Meets or Exceeds USP Purified Water specification.
- 5.2.2. HPLC grade Methanol

#### 5.3. Reference Standards:

5.3.1. Tromethamine Certified Reference Material (NIST)

### 5.4. Supplies:

- 5.4.1. Micropipette Tips
- 5.4.2. Class A volumetric flasks
- 5.4.3. Polypropylene transfer funnels or weighing boats

#### 6. METHOD PARAMETERS:

#### 6.1. GC-2010

- 6.1.1. Column Oven Temperature: 150.0°C
- 6.1.2. Injection Mode: Split
- 6.1.3. Injector temperature 220.0°C
- 6.1.4. Detector temperature 275.0°C
- 6.1.5. Flow Control Mode: Linear Velocity
- 6.1.6. Pressure: 25.0 kPa
- 6.1.7. Total Flow: 23.3 mL/min
- 6.1.8. Column Flow: 3.05 mL/min
- 6.1.9. Linear Velocity: 29.2 cm/sec
- 6.1.10. Purge Flow: 5.0 mL/min
- 6.1.11. Split Ratio: 5
- 6.1.12. High Pressure Injection: OFF
- 6.1.13. Carrier Gas Saver: OFF
- 6.1.14. Splitter Hold: OFF
- 6.1.15. Oven Temp Program:

| Rate<br><sup>O</sup> C per Min | Temperature (°C) | Hold Time (min) |
|--------------------------------|------------------|-----------------|
| i.e.                           | 150.0            | 3.00            |
| 10.00                          | 190.0            | 1.00            |
| 30.00                          | 270.0            | 2.00            |
| 0.00                           | 0.00             | 0.00            |

#### 6.2. Ready Checks

- 6.2.1. Column Oven: YES
- 6.2.2. HS: NO
- 6.2.3. FID: YES
- 6.2.4. HS Carrier: NO
- 6.2.5. HS Purge: NO
- 6.2.6. APC1: YES
- 6.2.7. FID Makeup: YES
- 6.2.8. FID1 H2: YES
- 6.2.9. FID1 Air: YES
- 6.2.10. External Wait: NO
- 6.2.11. Auto Flame On: Yes
- 6.2.12. Auto flame Off: Yes
- 6.2.13. Reignite: Yes
- 6.2.14. Auto Zero After Ready: Yes
- 6.2.15. Equilibrium Time: 0.0 min

#### 7. TESTING PROCEDURE:

#### 7.1. Solution Preparation

- 7.1.1. Note: Solutions may be scaled as needed
- 7.1.2. Diluent (6% Water in Methanol)
  - 7.1.2.1. Pipette 3 mL of water into a 50 mL volumetric flask, dilute to volume with methanol and mix.
- 7.1.3. Sample Solutions (20 mg/mL Tromethamine)
  - 7.1.3.1. Accurately weigh 1.00 g of Tromethamine and transfer into a 50 mL volumetric flask, pipette in 3 mL of water, mix, dilute to volume with methanol and mix well. Sonicate if necessary to completely dissolve the Tromethamine.
- 7.1.4. Impurity-level Stock Standard Solution (20 mg/mL Tromethamine)
  - 7.1.4.1. Accurately weigh 1.00 g of Tromethamine CRS and transfer into a 50 mL volumetric flask, pipette in 3 mL of water, mix, dilute to volume with methanol and mix well.
  - 7.1.4.2. Sonicate if necessary to completely dissolve the Tromethamine.
- 7.1.5. Impurity-level Standard Solution (0.2 mg/mL Tromethamine)
  - 7.1.5.1. Pipette 5 mL of the Impurity-level Stock Standard Solution into a 50 mL volumetric flask, add 3 mL of water, dilute to volume with methanol and mix well.
  - 7.1.5.2. Pipette 5 mL of the solution prepared in Step 7.1.5.1. into a 50 mL volumetric flask, add 3 mL of water, dilute to volume with methanol, and mix well.
  - 7.1.5.3. Label flask Impurity-level Standard Solution
- 7.1.6. LOQ Solution (0.006 mg/mL Tromethamine)
  - 7.1.6.1. Pipette 1.5 mL of the Impurity-level Standard into a 50 mL volumetric flask, add 3 mL of water, dilute to volume with methanol and mix well.
  - 7.1.6.2. Label flask: LOQ Solution

#### 7.2. Injection Sequence

7.2.1. Inject samples with a split ratio of 5.

| Sample ID                                 | Number of Injections                     |
|-------------------------------------------|------------------------------------------|
| System Suit                               | ability                                  |
| Diluent                                   | ≥1                                       |
| LOQ                                       | ≥3                                       |
| Impurity-level Standard                   | 5                                        |
| Sample                                    | es e |
| Samples                                   | ≤6 (1 injection each)                    |
| Diluent                                   | 1                                        |
| Impurity-level Standard (QC Check)        | 1                                        |
| • Repeat the sample injection sequence if | additional samples are to be analyzed    |
| Samples may be substituted with diluent   | -                                        |

#### 7.3. System Suitability Criteria

| System Suitability Parameter                    | Acceptance Criteria |
|-------------------------------------------------|---------------------|
| The relative standard deviation of the          |                     |
| Tromethamine peak from the first (5) injections | NMT 20%             |
| of the Impurity-level Standard solution.        |                     |
| The average %Agreement between the first five   |                     |
| (5) Impurity-level Standard injections and each | 80% to 120%         |
| Impurity-level Standard (QC check)              |                     |
| Signal to noise ratio for the LOQ injection.    | NLT 10:1            |

# 8. CACULATIONS:

## 8.1. Unspecified Impurities

- 8.1.1. Report any peaks above the average peak area of the LOQ injections
- 8.1.2. Any peaks above the LOQ injections will result in the batch not meeting the specification limit of NMT 300 ppm.

#### 9. CHROMATOGRAMS:

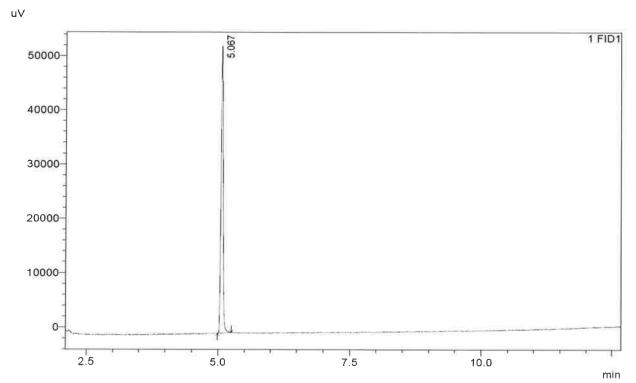



Figure 1. Impurity-level Standard Solution (0.2 mg/mL Tromethamine)

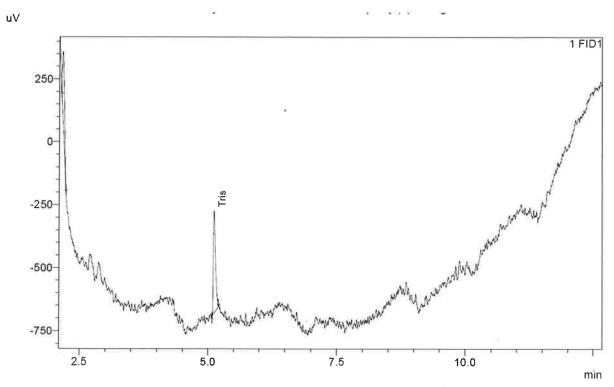



Figure 2. TRIS LOQ Solution (0.006 mg/mL Tromethamine)

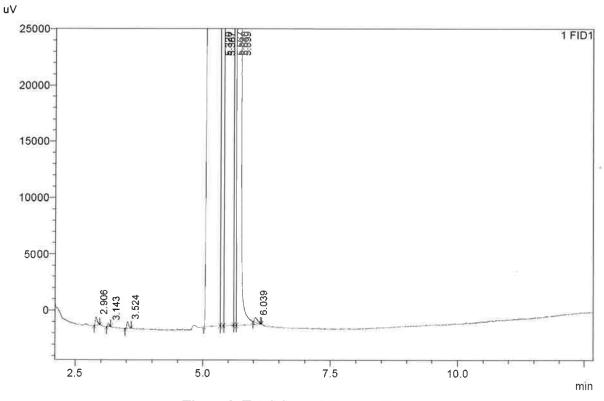



Figure 3. TRIS Sample Chromatogram

The information contained herein is the confidential property of BioSpectra. The recipient is responsible for its safe-keeping and the prevention of unauthorized appropriation, use, disclosure and copying.

# Signature Manifest

Document Number: BSI-ATM-0112 Revision: 1.1

Title: Tromethamine Unspecified Degradation Products Via GC-FID

Effective Date: 18 Jan 2024

All dates and times are in US/Eastern.

# BSI-ATM-0112, Tromethamine Unspecified Degradation Products Via GC-FID

# **Change Request**

| Name/Signature                | Title                                  | Date                     | Meaning/Reason |
|-------------------------------|----------------------------------------|--------------------------|----------------|
| Amy Yencho (AMY.YENCHO)       | Vice President, Laboratory<br>Services | 05 Dec 2023, 10:27:04 AM | Approved       |
| Virginia Pena (VIRGINIA.PENA) | <b>Document Control Specialist</b>     | 05 Dec 2023, 10:32:38 AM | Approved       |

# Originator and Peer Review Collaboration Workspace

| Name/Signature                       | Title                                   | Date                     | Meaning/Reason  |
|--------------------------------------|-----------------------------------------|--------------------------|-----------------|
| Joshua Goheen<br>(JOSHUA.GOHEEN)     | Laboratory Technology Manager           | 06 Dec 2023, 12:26:05 PM | Complete & Quit |
| Krista Rehrig (KRISTA.REHRIG)        | Laboratory Manager                      | 06 Dec 2023, 12:34:01 PM | Complete & Quit |
| Mark Uhlig (MARK.UHLIG)              | Associate Director of Product Lifecycle | 06 Dec 2023, 03:19:23 PM | Complete & Quit |
| Wayne Talamonti<br>(WAYNE.TALAMONTI) | Director of Laboratory Services         | 06 Dec 2023, 03:57:30 PM | Complete        |

# **Departmental Approval**

| Name/Signature          | Title                               | Date                     | Meaning/Reason | 15 |
|-------------------------|-------------------------------------|--------------------------|----------------|----|
| Amy Yencho (AMY.YENCHO) | Vice President, Laboratory Services | 31 Dec 2023, 07:39:07 AM | Approved       |    |

# **Author Approval**

| Name/Signature                       | Title                           | Date                     | Meaning/Reason |
|--------------------------------------|---------------------------------|--------------------------|----------------|
| Wayne Talamonti<br>(WAYNE.TALAMONTI) | Director of Laboratory Services | 07 Dec 2023, 11:35:53 AM | Approved       |

# **Quality Approval**

| Name/Signature                     | Title                                      | Date                     | Meaning/Reason |
|------------------------------------|--------------------------------------------|--------------------------|----------------|
| Hannah Kuchmas<br>(HANNAH.KUCHMAS) | Associate Director of Quality, Stroudsburg | 17 Jan 2024, 03:52:57 PM | Approved       |

# **Training Checkpoint**

| Name/Signature                    | Title                         | Date                     | Meaning/Reason |     |
|-----------------------------------|-------------------------------|--------------------------|----------------|-----|
| Thomas Hartmann (THOMAS.HARTMANN) | Training & Systems Specialist | 18 Jan 2024, 07:17:15 AM | Approved       | 1.7 |

#### **Set Date**

DUN: BSI-ATMI-UT12, Revision: 1.1, Effective Date: 18 Jan 2024, Date of Next Review: 18 Jan 2027.

| Name/Signature                | Title                       | Date                     | Meaning/Reason |  |
|-------------------------------|-----------------------------|--------------------------|----------------|--|
| Virginia Pena (VIRGINIA.PENA) | Document Control Specialist | 18 Jan 2024, 07:45:06 AM | Approved       |  |