

ANALYTICAL METHOD VALIDATION REPORT: DNASE (NICKASE) ASSAY MES HYDRATE

TABLE OF CONTENTS

1.	PURPOSE:
2.	SCOPE:
3.	RESPONSIBILITIES:
4.	REFERENCES:
5.	MATERIALS AND EQUIPMENT:4
	TABLE 1: REAGENTS4
	TABLE 2: EQUIPMENT
	TABLE 3: SUPPLIES
6.	VALIDATION PROCEDURE:
	TABLE 4: STANDARD PREPARATIONS
	TABLE 5: SAMPLE SOLUTION AND SPIKE RECOVERY PREPARATION
	TABLE 6: SUBSTRATE PREPARATION 7
	TABLE 7: REACTION MIX PREPARATION
	TABLE 8: DIGESTION PREPARATIONS
	TABLE 9: GEL TEMPLATE 8
7.	VALIDATION PERFORMANCE SUMMARY:
	TABLE 10: VALIDATION SUMMARY9
8.	VALIDATION RESULTS:
	TABLE 11: MES HYDRATE VALIDATION RESULTS

1. PURPOSE:

- 1.1. The purpose of this method validation report is to:
 - 1.1.1. To ensure the method of analysis for evaluating enzymatic activity of DNase (for nicking capability) by electrophoresis is adequately evaluated for suitability of use to detect levels of 1 Unit/g as a category 2 limit test.
 - 1.1.2. To summarize the findings for all applicable products from the DNase (NICKase) Assay validation including:
 - 1.1.2.1. System Suitability
 - 1.1.2.2. Specificity
 - 1.1.2.3. Limit of Detection

2. SCOPE:

- 2.1. This analytical method validation report applies to MES Hydrate.
- 2.2. The DNase (NICKase) Assay was validated as a category II Limit Test.
- 2.3. The Analytical Method Validation Master Plan dictates that this report will include an assessment and conclusive statements of validation on the following: System Suitability, Specificity, and Limit of Detection.
- 2.4. The sample was incubated for a period of time with the substrate (plasmid pBR322). The integrity of the substrate and the presence of any degradation products were examined using agarose gel electrophoresis containing Sybr gold stain. DNase (Endonuclease or 'nicking activity') will cause breakdown of the relatively fast migrating, supercoiled, circular pBR322 plasmid DNA to the relatively slow migrating nicked ("relaxed", but still circular) form and finally to the intermediate, migrating linear form in excessive amounts.

3. RESPONSIBILITIES:

- 3.1. The Associate Director Product Life Cycle and/or qualified designee(s) were responsible for completing the method validation report.
- 3.2. The Chemist Product Life Cycle and/or the qualified designee(s) were responsible for performing the testing as stated in the Analytical Method Validation Protocol.

4. **REFERENCES:**

- 4.1. BSI-PRL-0770, DNase NICKase Assay Method Validation Protocol MES Hydrate
- 4.2. BSI-SOP-0098, Balance SOP
- 4.3. BSI-SOP-0134, Pipette SOP
- 4.4. BSI-SOP-0135, Laboratory Chemicals
- 4.5. BSI-SOP-0259, Fisher Scientific Isotemp Water Bath Operation and Calibration SOP
- 4.6. BSI-SOP-0436, Analytical Methods Validation Master Plan

5. MATERIALS AND EQUIPMENT:

5.1.	All materials and equipment utilized in this	Validation are outlined in this section:
	i in materialo ana equipment atmbed in tito	

	TABLE 1: REAGENTS							
Reagent Lot Number Expiration Date Manufacturer Date of Opening Par								
DNase 1 Enzyme (Activity: 338.5 Units/µL)	2407903	3/8/24	Invitrogen	12/13/23	18047-019			
DNase 1 Buffer	BSP40P23	3/28/24	In-House Solution	Not Applicable	Not Applicable			
pBR 322 DNA Substrate	2441895	5/11/24	Invitrogen	12/13/23	15367-014			
TE Buffer	BSP39P92	1/31/24	In-House Solution	Not Applicable	Not Applicable			
Endonuclease Free Tris Base	190374	1/31/24	Fisher Scientific	10/23/19	BP152-500			
Sterile Water	6210004	10/24	Ricca	12/13/23	R9145000-1G			
DNase 10x Reaction Buffer (Endonuclease)	BSP40P18	2/22/24	In-House Solution	Not Applicable	Not Applicable			
Gel Loading Buffer	BSP39P75	12/17/23	In-House Solution	Not Applicable	Not Applicable			
1% Agarose E-Gel Cassette	T-280623-01	6/28/24	Invitrogen	12/13/23	G401001			

	TABLE 2: EQUIPMENT						
Equipment	Serial Number	Calibration Due	Manufacturer	Date of Last Calibration			
Analytical Balance	24801744	4/30/24	Sartorius	10/5/23			
100μL - 1000μL Pipette	O39512B	12/31/23	Eppendorf Research Plus	6/20/23			
500μL - 5000μL Pipette	J18397D	2/29/24	Eppendorf Research Plus	8/25/23			
0.5µL - 10µL Pipette	N27646F	12/31/23	Eppendorf Research Plus	6/20/23			
2μL - 20μL Pipette	G24188D	12/31/23	Eppendorf Research Plus	6/20/23			
20µL - 200µL Pipette	N41555G	2/29/24	Eppendorf Research Plus	8/25/23			
Calibrated Timer	221117644	1/5/24	FisherBrand	Not Applicable			
Centrifuge	41650138	Not Applicable	Fisher Scientific accuSpin Micro 17	Not Applicable			
Water Bath	300004011	5/31/24	Fisher Scientific Isotemp	5/26/23			
E-Gel Power Snap Electrophoresis Device	2848022040147	Not Applicable	Invitrogen	Not Applicable			
E-Gel Power Snap Camera	2848122060090	Not Applicable	Invitrogen	Not Applicable			

TABLE 3: SUPPLIES					
Supply Supplier Part Number					
epT.I.P.S. Pipette Tips	Eppendorf	0030071557			
Small Square Polystyrene Weigh Boats, White, 20mL	Cole-Parmer	01017-05			
2.0mL Microcentrifuge Tubes	FisherBrand	05-408-146			
15mL Screw Cap Tube 120 x 17mm, Polypropylene with Print	Sarstedt	62.554.100			
5mL Centrifuge Tube Rack	Bel-Art	F18513-4640			

6. VALIDATION PROCEDURE:

6.1. NICKase Assay

6.1.1. Prepared standards utilizing the table below:

	TABLE 4: STAN	DARD PREPARATIONS	-L of the last		
	DNase: Endonucle	ease Standards Preparation			
PurposeFinal Concentration (Unit/μL)Volume of DNase I Enzyme (μL)Volume of DNase Buffer (μL)					
Stock Solution A	0.2	1.18 ¹ of DNase I	1 998.82 ¹		
Stock Solution B	0.2x10 ⁻²	10 of 0.2	990		
Stock Solution C	0.2x10 ⁻⁴	10 of 0.2x10 ⁻²	990		
100% Limit Std.	0.2x10 ⁻⁵	100 of 0.2x10 ⁻⁴	900		

¹Refer to Step 6.1.1.1. for calculation to determine the volume of DNase 1 Enzyme.

6.1.1.1. Note: DNase (Endonuclease) Standard preparation is dependent on DNase 1 Enzyme concentration (found on the reagent container). The volume of DNase 1 enzyme used will be determined using the following equation (may be scaled as needed):

Volume of DNase 1 (
$$\mu$$
L) =
$$\frac{\left(0.2\frac{Units}{\mu L}\right) \times (Final Volume (\mu L))}{DNase 1 Enayme Concentration \left(\frac{Units}{\mu L}\right)}$$

6.1.2. Prepared each sample utilizing the table below:

1	ABLE 5: SAMPLE SO	LUTION AND SPIKE RECOVERY	PREPARATION
	Validation	Sample Stock Solution Prepara	ation
Sample ID	Sample Weight (g)	DNAse Free Tris Base (g)	DNase 1 Buffer Volume (µL)
MES Sample Stock Solution	0.0210	0.0102	1000
	Validation	Sample Spike Solution Prepara	ation
Sample ID	Volume of Sample Stock Solution (µL)	DNase 1 Buffer Volume (µL)	Amount of Stock Solution C (بلا)
0% Spike Sample Solution Rep. 1	100	900	0
0% Spike Sample Solution Rep. 2	100	900	0
0% Spike Sample Solution Rep. 3	100	900	0
100% Spike Sample Solution Rep. 1	100	800	100
100% Spike Sample Solution Rep. 2	100	800	100
100% Spike Sample Solution Rep. 3	100	800	100

6.1.3. Diluted Substrate prior to preparing reaction mix, as follows:

	TABLE 6: SUBSTRATE PREPARATION			
DNase: Endonuclease Substrate Preparation				
Final Concentration (µg/µL)	Volume of pBR 322 DNA Substrate (µL)	Volume of TE Buffer (µL)		
0.1	8	12		

6.1.4. Prepared a Reaction Mix, where Y represents the total number of tubes to be prepared, as follows:

TABLE 7:]	REACTION MIX PREPARATION		
Endonuclease Reaction Mix			
Amount	Solution		
(Y+1)x 1µL: 20µL	Diluted pBR 332 DNA Substrate		
(Y+1) x 1µL: 20µL	DNase 10X Reaction Buffer (Endonuclease)		
(Y+1) x 3µL: 60µL	Sterile Water		

6.1.5. Labeled an appropriate number of microcentrifuge tubes and added previously prepared solutions to each of the tubes as follows:

TABLE 8: DIGESTION PREPARATIONS							
	Blank	Test Solution	100% Spike Sample	System Suit. (Stock Solution C)	100% Limit Std.	Control	
Tube #	1	2-5	6-7	8	9	10	
Reaction Mix (µL)	5	5	5	5	5	5	
DNase 1 Buffer (µL)	5	-	-	-	-	5	
Test Solution (µL)	-	5	5	-	-	-	
Control Enzyme ¹ (µL)	-	-	-	5'	5 ¹	-	

¹Appropriately diluted DNase I. (Note, for instance, that 5 microliters of 0.2×10^{-5} Units DNase per microliter represents 1×10^{-5} Units DNase.)

- 6.1.6. Mixed thoroughly and immediately placed the Control onto ice or into a temperature monitored refrigerator.
- 6.1.7. Incubated all others at 37°C for 4 hours.
- 6.1.8. Cooled tubes on ice or in a temperature monitored refrigerator for approximately 5 minutes. Centrifuged all tubes for 1 minute. To each tube, added 4 microliters of Gel Loading Buffer. Vortexed thoroughly. Centrifuged for 1 minute.
- 6.2. Electrophoresis
 - 6.2.1. Utilized 1% Agarose E-GEL cassettes.
 - 6.2.2. Removed the gel from package and gently removed the comb from the E-Gel Cassette.
 - 6.2.2.1. Note: Loaded the gel within 15 minutes of opening the package and ran gel within one min of loading the samples
 - 6.2.3. Inserted the gel cassette into the E-Gel Power Snap Electrophoresis Device, starting from the right edge.
 - 6.2.4. Loaded the entire sample into to the well.

TABLE 9: GEL TEMPLATE		
	Suggested Well Setup	
Lane ID	Sample ID	
М	Blank	
1	100% Level Limit Std.	
2	System Suit. (Stock Solution C)	
3	0% Spike Replicate 1	
4	0% Spike Replicate 2	
5	0% Spike Replicate 3	
6	100% Spike Replicate 1	
7	100% Spike Replicate 2	
8	100% Spike Replicate 3	
9	Control	
10	DNAse Buffer	

- 6.2.5. Loaded all empty wells with 14μ L with DNAse Buffer.
- 6.2.6. Set up the run by selecting the E-Gel Protocol on the E-Gel Power Snap Electrophoresis Device. Ensure the run time is 10 min.
- 6.2.7. Ran the gel by pressing "Start Run"
- 6.3. Photograph
 - 6.3.1. Connected the E-Gel Power Snap Camera to the Electrophoreses unit.
 - 6.3.2. Pressed Capture in the home screen view.
 - 6.3.2.1. Note: Allowed the gel to cool for 5-10 minutes before image capture to enhance sensitivity.
 - 6.3.3. Exported image to a USB thumb drive.

7. VALIDATION PERFORMANCE SUMMARY:

TABLE 10: V	ALIDATION SUN	MMARY	
Acceptance Criteria	Product	Results	Final Disposition
 System Suitability 0% (Blank) lane demonstrates substrate degradation equal to or more pronounced than the control lane. The 100% Level standard lane shows substrate degradation more pronounced than the 0% (Blank). The Stock Solution C lane level shows degradation beyond nicking of the plasmid, this is evident through being the lane with the furthest traveled substrate and/or depleted supercoiled and relaxed state bands. Specificity The 100% Level Spike should demonstrate more pronounced degradation than the 0% spiked sample solution. The 0% spike sample solution should demonstrate degradation equal to or more pronounced than the control. Limit of Detection Report the NICKing activity level of detectability in DNase unit per gram. NMT 1 Unit/g is acceptable. 	MES hydrate	System Suitability Pass Pass Pass Specificity Pass Pass Limit of Detection 1 Unit/g	Meets Requirements

8. VALIDATION RESULTS:

8.1. MES Hydrate

- 8.1.1. Sample lot: ME3200-187-0819
- 8.1.2. Notebook Reference: MV12 pp14-17
- 8.1.3. Specification: NMT 1 Unit/gram (Reported as "None Detected").

NICKase - MES Monohydrate

Well ID #	Sample	Well ID #	Sample
м	Blank	6	100% Spike Sample Solution Replicate 1
1	100% Level Llmit Standard (0.2x10 ⁻⁵ Units/µL DNase 1}	7	100% Spike Sample Solution Replicate 2
2	System Suitability (Stock Solution C) (0.2x10 ⁴ Units/µL DNase 1)	8	100% Spike Sample Solution Replicate 3
3	0% Spike Sample Solution Replicate 1	9	Control
4	0% Spike Sample Solution Replicate 2	10	Sterlie Water
5	0% Spike Sample Solution Replicate 3		

The information contained herein is the confidential property of BioSpectra. The recipient is responsible for its safe-keeping and the prevention of unauthorized appropriation, use, disclosure and copying.

INITIAL: ML

DATE: 11/24/23

8.1.4. System Suitability, Specificity, and Limit of Detection were evaluated for MES Hydrate. Results are summarized in Table 12.

TABLE 11: MES HYDRATE VALIDA	ATION RESULTS			
System Suitability				
Parameter	Result			
0% (Blank) lane demonstrates substrate degradation equal to or more pronounced than control lane.	Pass			
The 100% level standard lane shows substrate degradation more pronounced than the 0% (Blank).	Pass			
The Stock Solution C lane level shows degradation beyond nicking of the plasmid, this is evident through being the lane with the furthest traveled substrate and/or depleted supercoiled and relaxed state bands.	Pass			
Specificity				
Parameter	Result			
The 100% level spike should demonstrate more pronounced degradation than the 0% spiked sample solution.	Pass			
The 0% spike sample solution should demonstrate degradation equal to or more pronounced than the control.	Pass			
Limit of Detection				
Parameter	Result			
Report the level of detectability in DNase units per gram. NMT 1 Unit/g is acceptable. $\frac{Units}{g} = \frac{1 \times 10^{-5} Unit}{(0.005mL \times 0.002 \frac{g}{mL})}$	1 Unit/g			

8.1.5. Conclusion

8.1.5.1. The method DNase (NICKase) Assay is considered validated and suitable for use for MES Hydrate at the BioSpectra Bangor, PA facility. All acceptance criteria for system suitability, specificity, and Limit of Detection were met. The Limit of Detection was determined to be 1 Unit/gram.