

RESIDUAL SOLVENTS METHOD FOR D-GALACTOSE

TABLE OF CONTENTS

l.	PURPOSE:	
	SCOPE:	
	RESPONSIBILITIES:	
	REFERENCES:	
5.	MATERIALS AND EQUIPMENT:	3
6.	PROCEDURE:	(
7.	REPORTING:	

1. PURPOSE:

1.1. To provide a procedure for the assessment of Residual Solvent Analysis for solvents in compliance with USP<467> and <1467> for Galactose.

2. SCOPE:

2.1. This method applies to the analysis of residual solvents in water and in 10% w/v solutions of Galactose.

3. RESPONSIBILITIES:

- 3.1. The Quality Control Manager, or other qualified designated individual, is responsible for the control, implementation, training, and maintenance of this Protocol.
- 3.2. The QC Analysts are responsible for complying with the requirements of this method.
- 3.3. If any abnormalities are determined during routine use or during calibration, the QC Manager shall be promptly notified. If necessary, the GC-FID will be serviced.

4. **REFERENCES:**

- 4.1. BSI-RPT-0781, Analytical Method Validation Report: Aqueous Soluble Residual Solvents USP 1467- Galactose
- 4.2. BSI-SOP-0098, Balance SOP
- 4.3. BSI-SOP-0126, Laboratory Notebooks
- 4.4. BSI-SOP-0134, Pipette SOP
- 4.5. BSI-SOP-0316, Shimadzu OP2010S GC SOP
- 4.6. BSI-SOP-0436, Analytical Methods Validation Master Plan
- 4.7. ICH Q3A
- 4.8. USP NF <467>
- 4.9. USP NF <621>
- 4.10. USP NF <1467>

5. MATERIALS AND EQUIPMENT:

- 5.1. Equipment
 - 5.1.1. Analytical Balance
 - 5.1.2. Shimadzu QP2010S GC/MS with FID Detector
- 5.2. Reagents/Reference Standards
 - 5.2.1. Galactose
 - 5.2.2. Purified Water/MilliQ Water (Type 1 Ultrapure)
 - 5.2.3. Methanol Reference Standard
 - 5.2.4. Ethanol (SDA 3C)
 - 5.2.5. 2-Propanol (IPA)
 - 5.2.6. Methyl Isobutyl Ketone (MIBK)
- 5.3. Consumable Supplies
 - 5.3.1. 20mL vertex Headspace Vial
 - 5.3.2. Verex Seal Vial Cap
 - 5.3.3. 150mL Beakers
 - 5.3.4. Volumetric Flasks, Class A
 - 5.3.5. Vesel Graphite Ferrule
 - 5.3.6. Metal Encapsulated Vespel Graphite Ferrule

The information contained herein is the confidential property of BioSpectra. The recipient is responsible for its safe-keeping and the prevention of unauthorized appropriation, use, disclosure and copying.

Method Parameters

HS-20	
Parameter	Requirement
Oven Temperature	80.0°C
Sample Line Temperature	150.0°C
Transfer Line Temperature	155.0°C
Shaking Level	I
Injection Count	1
Pressurizing Gas	176.2 kPa
Equilibrating Time	15.00 min.
Pressurization Time	0.50 min.
Pressure Equilibration Time	0.50 min.
Load Time	1.00 min.
Load Equilibration Time	0.50 min.
Injection Time	1.00 min.
Needle Flush Time	1.00 min.
GC Cycle Time	7.00 min.
Check System Ready	Off
Extended System Ready Check	Off
Check GC Ready	Off
Extended GC Ready Check	Off
Needle Check	Yes
Action on Leak Check Error	Stop
Action with No Vial in Tray	Stop
GC-2010	
Column Oven Temperature	80.0°C
Injection Mode	Split
Flow Control Mode	Linear Velocity
Pressure	176.2 kPa
Total Flow	50.7 mL/min.
Column Flow	2.32 mL/min.
Linear Velocity	47.6 cm/sec

The information contained herein is the confidential property of BioSpectra. The recipient is responsible for its safe-keeping and the prevention of unauthorized appropriation, use, disclosure and copying.

	GC-2010		
Purge Flow		2.0mL/min.	
Split Ratio		20	
High Pressure Injection		Off	
Carrier Gas Saver		Off	
Splitter Hold		Off	
	Oven Temp Program		
Rate °C per min	Temperature °C	Hold Time (min)	
	80.0	6.00	
	Ready Checks		
Column Oven		Yes	
HS		No	
FID		Yes	
HS Carrier		Yes	
HS Purge		Yes	
APCI Yes		Yes	
FID Makeup		Yes	
FID1 H2		Yes	
FIDI Air		Yes	
External Wait		No	
Auto Flame On		Yes	
Auto Flame Off Yes		Yes	
Reignite Yes		Yes	
Auto Zero After Ready		Yes	
Equilibrium Time		3.0 min.	
ČRG (INJ)		Off	
APC1		176.2kPa	

6. PROCEDURE:

6.1. Residual Solvent Stock Solutions:

- 6.1.1. Prepare individually a 1,000mg/L (ppm) solution of Methanol, Ethanol (SDA 3C), and Methyl Isobutyl Ketone (MIBK) in purified water by weighing approximately 0.50g of standard directly into a 500mL volumetric flask and dilute to volume. Mix thoroughly. Calculate actual concentrations based off CoA/purity.
- 6.1.2. Prepare individually a 10,000mg/L (ppm) solution of 2-Propanol (IPA) in purified water by weighing 0.50g of standard directly into a 50mL volumetric flask and dilute to volume. Calculate actual concentrations based off CoA/purity.
 - 6.1.2.1. Note: SDA 3C also contains ~5% of IPA and needs to be factored for the total IPA Concentration.
- 6.1.3. Stock Solution Concentration Calculation:

Stock Solution Concentration (ppm) = $\frac{(Solution\ weight\ (mg)}{Stock\ Solution\ Volume\ (L)} \times CoA\ Purity$

6.2. Calibration Standard Preparation:

- 6.2.1. Calibration Standard 1: 0 ppb (Blank): Purified Water or equivalent.
- 6.2.2. Calibration Standard 2 (50% Level):
 - 6.2.2.1. In a 100mL volumetric flask add the following:
 - 6.2.2.1.1. 0.50mL of 1,000ppm Methanol Stock Solution
 - 6.2.2.1.2. 2.50mL of 1,000ppm Ethanol (SDA 3C) Stock Solution
 - 6.2.2.1.3. 2.50mL of 1,000ppm MIBK Stock Solution
 - 6.2.2.1.4. 2.50mL of 10,000ppm IPA Stock Solution
 - 6.2.2.2. Dilute to volume with purified water and mix thoroughly.
- 6.2.3. Calibration Standard 3 (80% Level):
 - 6.2.3.1. In a 100mL volumetric flask add the following:
 - 6.2.3.1.1. 0.80mL of 1,000ppm Methanol Stock Solution
 - 6.2.3.1.2. 4.00mL of 1,000ppm Ethanol (SDA 3C) Stock Solution
 - 6.2.3.1.3. 4.00mL of 1,000ppm MIBK Stock Solution
 - 6.2.3.1.4. 4.00mL of 10,000ppm IPA Stock Solution
 - 6.2.3.2. Dilute to volume with purified water and mix thoroughly.
- 6.2.4. Calibration Standard 4 (100% Level):
 - 6.2.4.1. In a 100mL volumetric flask add the following:
 - 6.2.4.1.1. 1.00mL of 1,000ppm Methanol Stock Solution
 - 6.2.4.1.2. 5.00mL of 1,000ppm Ethanol (SDA 3C) Stock Solution
 - 6.2.4.1.3. 5.00mL of 1,000ppm MIBK Stock Solution
 - 6.2.4.1.4. 5.00mL of 10,000ppm IPA Stock Solution
 - 6.2.4.2. Dilute to volume with purified water and mix thoroughly.
- 6.2.5. Calibration Standard 5 (120% Level):
 - 6.2.5.1. In a 100mL volumetric flask add the following:
 - 6.2.5.1.1. 1.20mL of 1,000ppm Methanol Stock Solution
 - 6.2.5.1.2. 6.00mL of 1,000ppm Ethanol (SDA 3C) Stock Solution
 - 6.2.5.1.3. 6.00mL of 1,000ppm MIBK Stock Solution
 - 6.2.5.1.4. 6.00mL of 10,000ppm IPA Stock Solution
 - 6.2.5.2. Dilute to volume with purified water and mix thoroughly.
- 6.2.6. Calibration Standard 5 (150% Level):
 - 6.2.6.1. In a 100mL volumetric flask add the following:
 - 6.2.6.1.1. 1.50mL of 1,000ppm Methanol Stock Solution

The information contained herein is the confidential property of BioSpectra. The recipient is responsible for its safe-keeping and the prevention of unauthorized appropriation, use, disclosure and copying.

- 6.2.6.1.2. 7.50mL of 1,000ppm Ethanol (SDA 3C) Stock Solution
- 6.2.6.1.3. 7.50mL of 1,000ppm MIBK Stock Solution
- 6.2.6.1.4. 7.50mL of 10,000ppm IPA Stock Solution
- 6.2.6.2. Dilute to volume with purified water and mix thoroughly.
- 6.2.7. Calibration Standard Concentration Calculation:

Standard Concentration (ppm) =
$$\frac{(Stock\ Solution\ Concentration\ \left(\frac{mg}{L}\right))(Volume\ of\ Stock\ solution\ (mL))}{100\ mL}$$

6.2.8. Calibrate the GC-FID instrument using calibration levels 1-6 by pipetting 10mL of the blank and each standard to headspace vials. Crimp to seal, mix thoroughly.
6.2.8.1. An r² of NLT 0.95 is required for each solvent of interest.

6.3. Sample Preparation

- 6.3.1. Weigh approximately 1.0g of the sample to a head space vial.
- 6.3.2. Add 10mL of purified water to the head space vial.
- 6.3.3. Crimp to Seal, mixed thoroughly.
- 6.3.4. Enter the dilution factor: 10 in the software
- 6.3.5. Report the results.

7. **REPORTING:**

- 7.1. For Methanol, determined during the method validation, the method LOQ is the 80% calibration level after applying the dilution factor.
 - 7.1.1. For analysis results: Report any value below this value as less than the 80% calibration standard concentration multiplied by the dilution factor of the sample.
 - 7.1.2. For values greater than the 80% calibration standard concentration multiplied by the dilution factor of the sample, report the result to 1 decimal place.
- 7.2. For Ethanol, MIBK, and IPA determined during the method validation, the method LOQ is the 50% calibration level after applying the dilution factor.
 - 7.2.1. For analysis results: Report any value below this value as less than the 50% Calibration standard concentration multiplied by the dilution factor of the sample.
 - 7.2.2. For values greater than the 50% calibration standard concentration multiplied by the dilution factor of the sample, report the result to 1 decimal place.

Signature Manifest

Document Number: BSI-ATM-0101

Revision: 1.1

Title: Residual Solvents Method for D-Galactose

Effective Date: 23 Feb 2023

All dates and times are in US/Eastern:

Residual Solvents Method for D-Galactose

Change Request

Name/Signature	Title	Date	Meaning/Reason
Virginia Pena (VIRGINIA.PENA)	Document Control Technician II	03 Feb 2023, 12:27:19 PM	Approved
Amy Yencho (AMY,YENCHO)	Vice President, Laboratory Services	06 Feb 2023, 09:50:09 AM	Approved

Originator and Peer Review Collaboration Workspace

Name/Signature	Title	Date	Meaning/Reason
Krista Rehrig (KRISTA.REHRIG)	QC Laboratory Manager	17 Feb 2023, 01:15:00 PM	Complete & Quit
Jordan Vossler (JORDAN.VOSSLER)	Senior QC Analyst	20 Feb 2023, 11:23:05 AM	Complete

Departmental Approval

Name/Signature	Title	Date	Meaning/Reason
Amy Yencho (AMY.YENCHO)	Vice President, Laboratory Services	22 Feb 2023, 08:31:21 AM	Approved

Author Approval

Name/Signature	Title	Date	Meaning/Reason	
Jordan Vossler (JORDAN.VOSSLER)	Senior QC Analyst	21 Feb 2023, 01:39:35 PM	Approved	

Quality Approval

Name/Signature	Title	Date	Meaning/Reason
Carissa Albert (CARISSA.ALBERT)	Associate Director of Quality	23 Feb 2023, 11:46:14 AM	Approved

Training Checkpoint

Name/Signature	Title	Date	Meaning/Reason
Kimberly Hartzell (KIMBERLY.HARTZELL)	Training & Systems Manager	23 Feb 2023, 11:54:41 AM	Approved

Set Date

Name/Signature	Title	Date	Meaning/Reason	
Virginia Pena (VIRGINIA.PENA)	Document Control Technician II	23 Feb 2023, 11:59:06 AM	Approved	